SIAM J CoMPUT & 1958 Society for Industrial and Applied Mathematics
Vol 17, No 6, December [9n2 7

THE AVERAGE COMPLEXITY OF DETERMINISTIC AND RANDOMIZED
PARALLEL COMPARISON-SORTING ALGORITHMS*

N. ALONt} 'ann Y. AZART

Abstract. [n practice, the average time of (deterministic or randomized) sorting algorithms seems (o
be more relevant than the worst-case time of deterministic algoritbms. Still, the many known complexity
bounds for parallel comparison sorting include no nontrivial lower bounds for the average time required
to sort by comparisons n elements with p processors (via deterministic or randomized algorithms). We show
that for p = n this time is O(log n/log (1 +p/n)) (it is easy to show that for p = n the ume is ©(n log n/p)
Q(log n/{ pfn)). Therefore even the average-case behaviour of randomized algorithms is not more efficient
than the worst-case behaviour of deterministic ones.

Key words. parallel sorting, comparison algorithms, randomized sorting

AMS(MOS) subject classification, 68EQS

l. Introduction. Sorting is one of the central problems in computer science. For
extensive lists of publications dealing with serial and parallel sorting algorithms see,
e.g., [Ak85], [BHe85], [Kn73], and [Th&3].

Most of the fastest serial and parallel sorting algorithms are based on binary
comparisons. In these algorithms the number of comparisons is typically the primary
measure of time complexity. Any lower bound on the number of comparisons required
for a problem clearly implies a time lower bound for such algorithms.

It is well known that ©{n log n) binary comparisons are both necessary and
sufficient for sorting n elements in the serial comparison tree model. The situation is
somewhat more complicated for parallel algorithms. The common parallel comparison
model here is the one introduced by Valiant [Va75] (see also [BH085]), where only
comparisons are counted.

In measuring time complexity within this model, we do not count steps in which
communication among the processors, movement of data, and memory addressing are
performed. We also avoid counting steps in which consequences are deduced from
comparisons that were performed.

Note that any lower bound in this model implies the same bound for all algorithms,
based on comparisons, in any parallel random access machine (PRAM), including
PRAMs that allow simultaneous access to the same common memory location for read
and write purposes.

In a’serial decision-tree model, we wish to minimize the number of comparisons.
The goal of an algorithm in a parallel comparison model is to minimize the number
of comparison rounds as well as the total number of comparisons performed.

Let k stand for the number of comparison rounds (time) of an algorithm in the
parallel comparison model. Let ¢(k, n) denote the minimum total number of com-
parisons required to sort any n elements in k rounds (over all possible algorithms).

Upper and lower bounds for c¢(k, n) appear in [AA87], [AAV86], [AKSS83a],
[AKS83b], [AV87], [BT83], [BHe85], [Bo86], [BH085], [HHB80], [HHS81], [Pi87]. The

* Received by the editors June 15, 1987; accepted for publication (in revised form) January 14, 1988.

+ Department of Mathematics, Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, [srael.

f The research of this author was supported in part by an Allon Fellowship, a grant from the Bat Sheva
de Rothschild Foundation, and by the Fund for Basic Research administered by the lsrael Academy of
Sciences.

1178

RANDOMIZED PARALLEL SORTING 1179

best-known bounds for fixed k are (see [AA87], [AAVE6], [BHe85])
Q(n'""*(log n)"*)=c(k,n)=0(n""""" log n)

and for general k =log n (see [AV37], [AAV86])

(1.1) Qlkn' "M =e(k, n) < kn'™"H

where b >0 is a constant. These bounds imply that the time required for sorting n
elements, if p comparisons are pcrformed in each time unit, is O(log n/(p/n)) for
p=n and Olog n/log (1+p/n)) for p=n.

These results determine up to a constant factor the (worst-case) time complexity
of sorting in the parallel comparison tree model. However, the problem of estimating
the average (over all orders) running time of the best sorting algorithm, as well as that
of determining the time complexity of the best randomized sorting algorithm, is far
from being settled. In fact, besides the relatively easy {¥(nlog n) lower bound for
randomized (or average) serial sorting (see, e.g., [AHU74]), there are no known lower
bounds for the worst-case or average-time complexity of randomized sorting algorithms
at all. Such bounds appear to be important, since in practical situations we are naturally
interested in the average running time, and not necessarily in the worst-case behaviour.
Similarly, fast randomized parallel sorting algorithms could be extremely helpful in
practice.

Proving lower bounds for the average time of (deterministic or randomized)
comparison algorithms appears to be much more complicated than obtaining lower
bounds for the worst-case time of deterministic ones. In fact, there are several known
results that show that for various comparison algorithms the average time, as well as
the worst-case time of randomized algorithms, differs asymptotically from the warst-
case time of their deterministic counterparts. One such result is due to Reischuk [Re81],
who gave a randomized comparison parallel algorithm for selection, whose expected
running time is bounded by a constant, using n processors. Together with the
Q(log log n) lower bound of [Va75] for finding the maximum among » elements using
n processors, we conclude that there exists a randomized algorithm for selection that
performs better than any of its deterministic counterparts. The results of [BHe85] on
approximate sorting in one round, those of [Rei85] on integer sorting and those of
[AAVB6] on sorting in a fixed number of rounds supply several other examples of
parallel randomized comparison algorithms that perform better than the corresponding
best-known deterministic ones. In view of these examples we might expect that random-
ized parallel sorting algorithms could work asymptotically faster than deterministic
ones. Our main result in this paper is that this is not the case. In fact we prove the
following theorem.

THEOREM 1.1. The average time required for sorting n elements in the best random-
ized algorithm with p processors, (i.e., the best algorithm that performs p comparisons in
each time unit), is O(log n/log (1+p/n)} for p= n (and is, easily, O(log n/(p/n)) for
p=n).

This matches, up to a constant factor, the worst-case running time for the deter-
ministic case for all values of p.

To prove the lower bound we prove the following proposition.

ProposiTiON 1.2. The average number af comparisons in the best deterministic
algorithm that sorts n elements in k rounds is

Qlkn'*V*) for all k=log n.

1180 N. ALON AND Y. AZAR

Note that for k =©(log n) this coincides with the known bound for the serial case.

A parallel algorithm is said to achieve average optimal speedup if its average
running time is proportional to Seq (n)/p, where Seq (n) is the lower bound on the
average serial running time, n is the size of the problem being considered, and p is
the number of processors used.

An immediate consequence of Theorem 1.1 is that if the number p of processors
is larger than n by an order of magnitude then it is impossible to design an average
optimal speedup randomized comparison sorting algorithm. Note that, for p= O(n),
there is an optimal speedup (deterministic and therefore randomized or average
deterministic) algorithm, given by the [AKS83a], [AKS83b] sorting network. These
results enable us to identify asymptotically the parallelism average break point of
sorting, which is the minimum average time that can be achieved by an average optimal
speedup algorithm. Specifically, ©(log n) is the average break point for sorting n
elements, which is the same break point as that of deterministic algorithms (see
[AAVE6], [AVET]).

Note that for finding the maximum the average break point is better than the
worst-case break point. Reference [Va75] proved that ©{log log n) is the break point
for finding the maximum among n elements but [Re81] proved that @(1) is the average
break point of that problem.

The proof of Theorem 1.1 differs considerably and is far more complicated than
that of the corresponding result for the worst-case time of deterministic algorithms
(which, obviously, follows from it). The main difficulty lies in the proof of Proposition
1.2. As we are dealing with the average-case behaviour, we cannot use the traditional
adversary way for choosing the unknown order; we need a new method. Since a direct
proof seems elusive, we must prove a stronger result, which implies, e.g., that our
bound holds for algorithms that allow, in addition to usual comparisons, questions of
the form “‘is rank (x)=i?" For the exact statement of the stronger result see § 2. We
are unable to prove Proposition 1.2 without proving this stronger assertion. :

The derivation of Theorem 1.1 from Proposition 1.2 is much easier than the proof
of Proposition 1.2; however, it is not straightforward. It combines certain probabilistic
arguments with a well-known observation of Yao [Ya77] and the upper bound in
inequality (1.1). This is described in § 3. The final section, 4, contains concluding
remarks, together with an application of our method to selection problems.

2. The average number of comparisons in deterministic algorithms.

2.1. The parallel computation medel. Let N be a set of n elements taken from a
totally ordered domain. The parallel comparison model of computation equivalent to
the parallel computation tree model of [BHo85] allows algorithms that work as follows.
The algorithm consists of timesteps called rounds. In each round binary comparisons
are performed simultaneously. The input for each comparison is two elements of N.
The output of each comparison is one of the following two: < or >. Each item may
take part in several comparisons during the same round.

Our discussion uses the following correspondence between each round and a
graph. The elements are the vertices. Each comparison to be performed is an undirected
edge that connects its input elements. Each computation results in orienting this edge
from the largest element to the smallest. Thus in each round we get an acyclic orientation
of the corresponding graph, and the transitive closure of the union of the r oriented
graphs obtained until round r represents the set of all pairs of elements whose relative
order is known at the end of round r.

RANDOMIZED PARALLEL SORTING Lius

Suppose we performed r rounds where r>0 is some integer. The comparisons
performed in round r + 1 are chasen, of course, according to the results in all previous
rounds.

Recall that ¢(k, n} denotes the minimum fotal worst-case number of comparisons
required to sort n elements in k rounds (over all possible algorithms).

Let rik n) denote the average total number of comparisons, over all orders,
required to sort n elements in k rounds, in the best algorithm (that necessarily stops
after k rounds). Clearly r(k n)=c(k n). Our objective is to prove Proposition 1.2,
which supplies a lower bound for r(k, n), where k is possibly a function of n.

2.2. Legal situations. We prove a stronger result that implies Proposition 1.2. We
consider the following situation, called a legal situation: We have s+ 1 disjoint sets of
elements, denoted Z and Y, -+, Y., with a set E of edges (comparisons) between
them.

The set Z, |Z]|=m, 0= m=n, is a set of m elements such that the rank of each
z€ Z in the total n-order is known. Y,, -+, Y,, |Y,|=3>0, | =i=s are s =0 sets of
elements such that, for each i, the set of y, ranks of the ith set in the total n-order is
known, but all the y;! orders of the elements of the sets are equally likely. The existing
edges (comparisons) we have are oaly for this round and are only between pairs of
elements of the same Y, for some i, or between an element of Y, and an element of
Z. The answers to these comparisons are known, but depend, of course, on the actual
orders inside the sets Y,. Let e, be the number of edges in Y,. Let &, be the number
of edges between an element of Y, and an element outside Y;, whose relative order
does not follow from the known information about the sets of ranks. Denote f; = ¢, + 1¢,
and call it the “f~-number” of the set Y; in this situation.

The following facts are worth noting:

(1) The number of edges |E| satisfies

lElz‘}; (e,+-12-é,) = z o

im]

(2) The number of elements n satisfies

n=m+7Y y.
t=1

{3) The (known) set of ranks of each Y; is not necessarily a block of y; consecutive
ranks, and there are no edges between an element of Y] and an element of Y] for i # j.
Before the next round of comparisons, all the information about the relative order of
an element of Y; and an element of Y, is a consequence of either the known sets of
ranks of Y; and Y, or the results of comparisons to elements of Z and transitivity.

(4) If for some set Y;, £ =0 then all the y;! orders in this set are equally likely
for each possibility of the results of the comparisons of the present round (and
independently of these results).

2.3. The lower bound. Let A denote the above legal situation. Denote by F(k, A)
the average, over all the [];., (»;!) possible orders, of the “f-number’” of comparisons
that are needed to sort the n elements in k more rounds, starting from situation A.
Here the “f-number” means that a comparison between an element of Y, and an
element of Y, (i can be equal to j} is counted as one comparison and a comparison
between an element of Y; and an element of Z is counted as 5 a comparison.

T ——

= M. ALUN AND Y. AZAR

Define
1

(E)l.l. 0" 1
gy, N={\4/ y
(g) 1.4

i A

where ¢ is some positive constant to be chosen later. Define also

yl*‘\/k
)) :k —_——y |.
LR [Cg&(}‘.f) _,,]

Note that ¢, is a monotone nonincreasing function of f The key inequality is the

following.
THEOREM 2.1. In the above notation

(2.1) PleAy="S s)

Jor every k= 1, and every legal situation A.

The (rather lengthy) proof of Theorem 2.1 is given below. It is based on moving
from one legal situation to another by finding properties that hold for all orders (and
not just for a special one chosen by an adversary). Some inequalities for convex
functions and some statistical behaviour of random orders are used as well, together
with a reduction of nonlegal situations that are created during the algorithm to legal
ones.

Proposition 1.2 for k =log n/(log 2¢) is the special case of Theorem 2.1 in which
A is the legal situation with Z=¢,s =1, Y, is the set of all elements, and f, =0. For
k =0(log n), Proposition 1.2 follows immediately from the serial bound. Another
special case of Theorem 2.1 corresponds to algorithms that allow queries of the form
“is rank (x) =i"" besides usual comparisons. Indeed, suppose we have 2n — | elements.
Let A be the legal situation in which |Z|=n —1, the set of ranks of Z is {2,4,---,2n~
2}, s =1, the set of ranks of Y; is {1,3,---,2n—1} and f, =0. Applying Theorem 2.1
to this situation we conclude that Q(kn'*'"*) comparisons are needed to sort Y, in
k{= log n) rounds, where here, clearly, a comparison to an element of Z corresponds
to a query of the form “is rank(x)=i?"

Proof of Theorem 2.1. We prove the theorem for every fixed n =2 by induction
on k and on the parameters of A with ¢=256e. (We make no effort here to obtain the
best possible ¢.) The base case is left to the end. Our induction hypothesis is that the
assertion of Theorem 2.1 holds for any k’ and any legal situation A" with sets Z’,
|Z\=m"and Y}, ---, Y., |Y!]=y:>0, where

m'+ Y yi=n,
i=1
provided at least one of the following three cases holds:

(a) K'<k '

(b) k'=k and T;_, yi<X.., V-

(¢) K'=k Y ., yi=Y._ ,y and s <s'. (Note that always s, s'= n.)

We have to prove the theorem for k and A. We consider two possible cases.

Case 1. There is a set Y;, with f,>0.

Case 2. Forall i 1=i=s, f,=0,and k> 1. (The case k=1 and f, =0 for all i will
be the base case.)

RANDOMIZED PARALLEL SORTING 1183

In Case 1 we can assume, without loss of generality, that f,> 0. Denote Y =Y,
|Y|=y=y.f=1.

Subcase la. f=(1/c*™")y>. Inthiscase @ (¥, /) Sk(y' """ /c(cf/y) ' ~y)=0. For
each order of Y, let the algorithm know this order for free; i.e., let A" be the legal
situation obtained from A by replacing Z by ZU Y. Since ¥ y;i<} y, and &'=k it
follows from the induction hypothesis (case (b)) that

5 z—1 5
Fk',A)z ¥ eulyi,fI)= Z‘ ey, = X ey f).
i=1 = =1
Averaging over all orders of Y we conclude that F(k A) é):::] ey, fi), as needed.
(Note that each comparison that is counted as one comparison in F{k', A") is also
counted as 1 in F(k, A) and each comparison that is counted as 3 in F(k’, A") is
counted either as 3 or as 1 in F(k, A).)

Subcase 1b. 0<f=y/4. Since 2f =2e, + €, there are at most 2f elements in Y,
which are compared to some other elements (in Y or in Z). Let Y.< Y be a set of
2f = y/2 elements containing all those that are compared to members of YU Z. Also
define Y., = Y\ Y. We let the algorithm know for free the set of ranks of Y and
Y..,. This corresponds to the legal situation A’ obtained from A by splitting Y, into
the two sets Y. and Y,,,. For A", s'=s+1, fi=f, f..1=0. As 5'> 5 we can apply
the induction hypothesis (case (c)) to A" and conclude that

s+1 x

Fllk AYz ¥ eyl)2 L oy f) -0, N+ @2, N+ euly = 2£0).

In Appendix 1 below we show that for 0<f=y/4, @ (2f,)+ ely —2£,0) = @ (. f).
Thus, for each A’ that arises as above F(k, A)ZY_, (¥, fi). Averaging over all
possible assignments of the two sets of ranks to the elements in Y and in Y., , we
conclude that F(k, A), which is at least this average, is atleast Y., @.(y:, fi), as needed.

Subcase 1c. (The main case.) y/4<f<y*/c*"". Definet=[4f/y](>1),B=|y/t].
Note that 2=t=8f/y, and y/t= y*/8f>c**'/8, and hence 8 =1 and

g
(2.2) ﬁ=[{Jz{(lcm)'

Randomly partition Y into t+1 blocks By, - -, B,, C where |B|=8, and |C|=y -8
(possibly |C|=0). For each such partition choose a random permutation 7 of
[1,2,---,t]. Assume that each element of C is greater than each element of Y\C,
and that each element of B; is greater than each element of B, if and only if 7 (i) > = (j).
These choices, together with the assumption that all the orders inside each block are
equally likely, give each of the possible y! orders of y with equal probability. For each
choice of B;, C, and m, there are t pairwise disjoint sets Z,, - - - | Z, whose ranges of
ranks lie inside those of B,,-- -, B,. Let g{ be the number of comparisons between
two elements of B,, and let g7 be the number of comparisons between an element of
B, and an element of Z,. Also define g, = g!{+3ig/. Note that g/, g7, and g, are random
variables (whose values depend on the choice of the partition and of =), that 2g, is
an integer, and that g; is the f~number of B; (since the result of each comparison
between members of B; and members of N\(B;U Z,) follows from the assumptions
on the sets of ranks of each B). If 2g,<p, let. G, be a subset of B, |G,|=2g, that
contains every member of B;, which is compared to a member of B,U Z. (Clearly
there are at most 2g; such elements.) If 2g; = 8, define G, = B,. Also define N, = B\G..
We let our algorithm know for free the sets of ranks of each G, and each N,. By the
definition of ; there are no comparisons between G; and N,. Hence we now have,
for each choice of B, C, and =, a new legal situation A', which is obtained from A

B

1184 N. ALON AND Y. AZAR

by replacing Z by ZU C and by replacing Y = Y, by all the nonempty G, and N, (of
which there are at least { = 2). Note that for A, k'=k, Y y/ =) v, and s"> 5. Note also
that the f-number of N,, fy =0 for each nonempty N,, 1=i=1 Let h =f; be the
f-number of G,. Note that A, = g,. By applying case (c) of the induction hypothesis to
A’ (and by the fact that ¢, (0, 0) =0) it suffices to prove that

Y=y, —¢,=0 where

(2.3) ; :
i = E(Z ‘Pk([N.LO)‘!' E ‘Pk(IG:L h.)). g, = 'Ph(}"f).

=1 i=

and where the expected value is over all choices of the partition B,, C, and the
permutation 7. By the symmetry of the sets B,

E(g e(INL 0+ ¥ (|G, h,)) = tE(@u(|N)|, 0)+ au(| G,)

'—::‘.- fE{¢k(iN|I, 0) +'Pk([Gl|! gl))

Denote g=g,. Let A, be the event 2g <8 and let p=p(A,) be its probability. Put
P =1—p. In this notation the right-hand side of the last inequality is simply

tpEA (@x(B —2g,0)+ ¢i(2g, g)) + PE 5 (9:(B, 8)),

where E, , E z, are the expectations given A,, A,, respectively. Hence

gtk 117k
e prA.(k[(—'B—-f—)——(B —zg)] +k[(ig~)—~—2g])

c(e/2)V*-
v E ‘slﬂfk]
+"’E"'("[c(cg/ﬁ)”*"ﬁ)

3 (zg)l"'lfk Bi"‘ifk

N T B

[rea(o-20 2+ G PEA e/ B

Put E,(2g)=a,, E5(2g)=a,, E(2g)=a. Note that a,= 8, pa,+pa,=a, p+p=1,

and Bt = y. By the convexity of the functions x'*"/* and 1/x"/* we can apply Jensen's
inequality (see, e.g., [HLPS59]) to get

tk

C

} —ktB(p+p).

:.E " AR a:ﬂ/& _ ‘BHI/k :l
""=c["((ﬁ S A

Put @y =a,/B, a,=a,/B, a =a/B. Clearly

(2.4) a,=1, pa, + pa, = a,
and

)krﬁ’“’"[(. a:ﬂjk ; 1]
A +(c/z)”*)+”<(c/2)az)“* gt

Hence

FERaE T e | e

ywuk
i e S |
* [C(CI/)’)'”‘ y]

RANDOMIZED PARALLEL SORTING 1185

Since ¢ < 8f/y we conclude, by (2.2), that

1+1/k < AK+1y1+1/k 1+1/k
wgky (1 8{/5) [p((l—al)“'“*‘ a,)

1/ k
ct”’

- 4 1 }
((lezJa,z)l,fk (C/S)IH\(I_B/CIL+])‘+UA <
As ¢ =256e we can check that (1~16/¢*"")*Z1-16k/c*"" =}, and hence

8 1+1/k 8 - 16 1 1/k
e i ()
c c c i
Therefore

}kyHl/k{l_S/Ck-H)lﬂjk[(i i ai”“‘) ﬁ . 1 b
e ct't* ZL) +(C/2)”“ +((6/2)az)'“‘ (6/16)”"J'

To establish (2.3) it suffices to show that

h=0 where
(2.5)

hepf ey ST
gl o) (c/27%] T (c/2)an) ™" (c/16)7%"

In Appendix 2 we prove that (2.5) holds, subject to the constraints (2.4) and
(2.6) a=4

In Appendix 3 we establish (2.6). Therefore ¢y Z0 and (2.3) holds, completing the
proof of Subcase 1¢ and that of Case 1.

Case 2. Forall ,1=i=s, f;=0 and k> 1. Here the next round of comparisons
(kth from the end) is performed. Let F be the set of these comparisons. Note that (if
5> 1) F may contain comparisons betweé¢n members of distinct sets Y;, and hence the
present situation is not necessarily a legal one. Let f,, - - -, f; be the new “f~-numbers”
of Yy, -+, Y, (ie, fi= e +1é, where ¢, & are as in the definition of a legal situation
given in § 2.2). Clearly |F|=Y;_, f.

Subcase 2a. s=1. In this case the present situation A’ is a legal one. For A’ the
number of remaining rounds is k'=k—1, and there is a set Y=Y, with f~number
f=1i, and |Y|=y elements and a set Z. By case (a) of the induction hypothesis
F(k', A"} = @, _i(y, f). Therefore, to complete the proof for this subcase it suffices to
check that

f+ ‘Pk*l(}’)ﬂ g (pk(yy 0)
If 0=f<y/4 then

ywl/(k-l)
fteanNZ ey, =k~ 1)(W1":ﬁ—}')

l y'l."““‘l) 1
”k”[(l k)c(c/4)”“"”+k b

By the Arithmetic-Geometric Inequality aa+ 8b = ¢°b® forall o, 8,2, b=0,a+ B8 =1.
Applying it with a =1—1/k, 8 =1/k we get
(/=1 ((k=1)/ k)

frennNz ky[m"@? ' 1”"] —ky

1+1/k 417k 1+1/k
i : ~—kyz

¢ -kyi‘pk(yx O)v

1186 N. ALON AND Y. AZAR

as needed. Otherwise f> y/4 and then, by a similar application of the Arithmetic-
Geometric Inequality,

}"l!-lfi‘i"l))
o)=+l e
SHow(n) =r+()(C(Cf/}) 7% ¥

1 f 1 y\,'u.--n
¥ k}’[i(}) +(1 ‘E) vy |~k Dy

f 1/ & val/nk--nmk»\:/k)
3!‘\)’(;) C(A/lvk—lnuk = “'lkl(f/}’)hk '{‘R = l)y

k"’lrlj’k 1+1/k

= —(k- l)_v?;:k(y ~}') = ¢y, 0).

C C

This completes the proof of Subcase 2a.

Subcase 2b. s> 1. Here the situation is not necessarily legal, as there may be
comparisons between distinct sets Y,. We will show that the average value of the
J-number of comparisons of each set Y, is at least ¢,(y;, f;}. As the total f~number is
simply the sum of the f~numbers of the sets Y;, this will give the desired result. Fix i
I=i=s Let A7 be the legal situation obtained from (the possibly nonlegal one) A’
by defining Z"= N\'Y,, i.e., by giving the exact rank of each element outside Y. (Note
that there are many distinct such A], depending on the actual ranks of the elements
in U;,; Y.} As y,<2;__l ¥, we can apply case (b) of the induction hypothesis and
conclude that F(k—1, A7) = ¢« (3, £i). It follows that any algorithm that sorts in k —1
rounds, starting from the situation A’ performs on the average at least ¢, (y;, f;)
(f-number of) comparisons for Y;, averaging only on those orders in which the ranks
outside ¥; are as in the specific choice of A]. Averaging over all possible A and
summing over i, 1 =i =5, we conclude that

Fls AZ T fi+ T eu-ilyi)

= 3 (it ol)2 I ouly,,0),

ie=]

where the last inequality follows from the computation of the previous subcase. This
completes the proof of Case 2, and the proof of the induction step. :

To complete the proof of Theorem 2.1, it remains to establish the base case of
the induction. Clearly this case corresponds to a legal situation A with k=1, with a
set Z and sets Y,, - -, Y,, where f, =0 for all i (otherwise we are in either Case 1 or
Case 2, and can apply the induction hypothesis). By the arguments given in the proof
of Subcase 2b, we can reduce the case s> 1 to the case s = 1 (otherwise we bound the
J-number for each Y separately, as in Subcase 2b). Hence we may assume that for A4,
k=1,s=1,Y=Y,, lY! =y f1=0, and Z is a set of elements with known ranks. We
must sort Y in one round. Note that since we must complete the sorting in one round
we actually have to prove here a worst-case lower bound. If there are two successive
ranks in the (known) set of ranks of Y, we must compare each pair of elements of Y.
Indeed, suppose that a dispensed comparison is between such two successive elements
of Y in the sorted order. The algorithm will clearly fail to determine their relative
order. Hence, in this case, F(1, A) = (}) = ¢,(y, 0), as needed. Therefore, we may assume
that there is at least one element of Z between any two successive elements of Y.
Clearly we can assume that there is precisely one element of Z between any two

RANDOMIZED PARALLEL SORTING 1187

successive elements of Y and that there are no elements of Z that are greater than all
members of Y {or smaller than all members of Y), as no additional information can
be derived from comparisons to such elements. We can thus assume that |[Z|=|Y| -1 =
y—1, the (known) set of ranks of Z is {2,4,---, 2y —2}, and the (known) set of ranks
of Yis{1,3,---,2y—1}.

Let F be the set of comparisons performed by the algorithm. Suppose £ = F'U F”,
where F* are the comparisons between elements of Y and F" are those between
elements of Y and elements of Z. We claim that if a, b are two distinct members of
Y and the comparison (=edge) {a, b} satisfies {a, b} & F’ then there are at least
y—1=|Z| comparisons in F" that involve a or b. Indeed, if this is false, then there is
an element z € Z such that {a, z}, {b, z} & F". If rank(z) = [, then the algorithm clearly
will fail to distinguish between any order in which rank(a)=1[-1 and rank(b)=1+1
and the order obtained from it by replacing the ranks of a and b. Thus the claim holds.
Summing these comparisons of F” over all a, b with {a, b} F', we obtain at least
(y—1)- (2)—|F’]). In this sum each comparison in F” is counted at most y — 1 times,
as for every a€ Y there are at most y—1 be Y, b# a such that {a, b} 2 F'. Hence

(y-DIFz(- n((;) —IF'I), e, |[Fl+|F=z (f)

We conclude that the frnumber of Y satisfies f=|F'|+4F"|=42) = @.(y,0). This
completes the proof of the base case of the induction and establishes Theorem 2.1. [

3. Time lower bounds for randomized parallel sorting algorithms. In this section
we derive Theorem 1.1 from Proposition 1.2. The easy fact that for p = n the average
time is O(log n/(p/n)) follows from the existence of the sorting network [AKS83a],
[AKS83b], together with the (}(n log n) known bound for serial average randomized
algorithms. The upper bound in inequality (1.1) implies that for every p=n time
O(log n/log (1+ p/n)) is sufficient, even for the worst case of deterministic algorithms.
It remains to prove the lower bound ((log n/log (1 +p/n}) for p= n. As observed by
Yao [Ya77], since any randomized algorithm is simply a probability distribution on
deterministic ones, it suffices to establish the same lower bound for the average time
of deterministic sorting algorithms with p processors. This does not follow immediately
from Proposition 1.2, since in this proposition we considered only algorithms that
necessarily stop after k rounds. Hence we need to do some more work. We first need
the following simple probabilistic lemma. Let S, denote the group of all permutations
on n elements. For Ac S, and g,€ S, define goA ={gog|gec A}. Also define g(A) =
|Al/1S,| = |Al/ n!

Lemma3.l. IfA< S, and q(A)=; then for every s = 1 thereareg,, g,, "+, g.€ S,
such that g(N7., gA)=1/2"

Proof. Choose, independently, s (not necessarily distinct) random elements
£1,8, "",8 of S,. If he S,, the probability that he N, gA, is precisely g{A)".
Thus, the expected number of elements in N;., gA is n'g(A)’ =n!/2", and there are
g, ", & €S, satisfying the conclusion of Lemma 3.1.]

ProposiTioN 3.2. Suppose there is a deterministic algorithm M that sorts n elements
with p processors in expected time T. Then, for every s =1, there is a deterministic algorithm
that sorts n elements in 2T+ [T|=4T rounds (and necessarily stops after these 4T
rounds) with at most 2Tps+1/2°[T|n'**' T average number of comparisons, where b> 0
is the constant from (1.1).

Proof. Let N be the set of elements we have to sort. Let A be the set of all
permutations of N that M fails to sort in =27 rounds. Clearly, g(A) =} By Lemma
3.1 there exist g,,---, g. € S, such that g(N;., gA)=1/2". Let M" be the algorithm

e i st o s]

1188 N ALON AND Y. AZAR

in which s copies of M run simultaneously for [2T| rounds, where the ith copy runs
on the elements of N permuted according to g, '. Clearly M" finds the order of N,
unless this order corresponds to a permutation in B = (1., g.A. But this happens only
on a 1/2"-fraction of the orders. Let M’ be the algorithm that consists of M”, and if
M fails it uses the best deterministic algorithm for sorting N in [T] rounds. By (1.1}
this part takes, in the worst case, at most [T]n'"® T additional comparisons. This
completes the proof. a

Proof of Theorem 1.1. As observed in the beginning of this section, we only have to
establish an Q(log n/log {1+ p/n)) lower bound for the average time of deterministic
algorithms for sorting n elements with p = n processors. By Proposition 1.2 there exists
a (small) constant 3> ¢ >0 such that the average number of comparisons in any
deterministic algorithm that sorts n =2 elements in k =log n rounds is at least

(3'1} (_knltl/'k-

Let 5=1 be the (large) constant from inequality (1.1). Let d be the (small) positive
constant defined by

1
32 —=1+] 16b) +log (1/2c).
(3.2) 16d og (16b) +log (1/2¢)
(Notice that the right-hand side is positive, as ¢ <3, b=1.)
Let M be a deterministic algorithm that sorts n elements with p = nr processors
in expected time T. To complete the proof we show that

(3.3) Tz=dlogn/log(l+p/n)}.

If T=d logn then (3.3) holds (for every p=n). Hence, we may assume that T <
d log n{<b-logn). Define s=[blogn/T)]. Clearly blogn/T=s=2blogn/T. By
Proposition 3.2, there is a deterministic algorithm that sorts n elements in at most 4T
rounds with at most

bl
ey

1
2Tps+;fT]nl+b”T§4T

average number of comparisons. Hence, by (3.1)

blogn

4Tp +2Tnzc-4Tn'"VED,

ie.

4R BB 4 en 4T 92 2cn T

n

where the last inequality holds since log n/4T > 1/4d > —log (c). By taking logarithms
we obtain

r :-]_O.g_r_.l_ log n i
log(n): 4T log(aT)+108(26) log (16b).

Aslogn/4T>1/4d > 4 we have

log L (log n) = log n
4T 4T

RANDOMIZED PARALLEL SORTING 1189

Also, by (3.2),

1
——>——>log (16b) —log (2¢).
6T ABd & 5 ®

These three inequalities imply

log n

167"

log(p/n)>

and hence, for p = n the inequality

1 logn
T g

— >dlogn/log(l+(p/n))
)lélogtp/n) g n/log (p/

holds (provided our assumption T <d log a holds). This establishes (3.3) and com-
pletes the proof. a

4. Concluding remarks. We have shown that the average running time of any
comparison (deterministic or randomized) algorithm for sorting n elements with p
processors is O(log n/log (1+p/n)), for all p=n, (and is O(log n/(p/n)) for p=n.)

This is the first known nontrivial bound for randomized parallel comparison
sorting algorithms. It shows that the average time of the best randomized algorithm is
not smaller than the worst-case time of the best deterministic algorithm for all p and
n, up to a constant factor.

We note that although Proposition 1.2 is mainly used as a tool for deriving this
result, it actually gives additional information. This proposition shows that the average
number of comparisons in any deterministic algorithm that sorts n elementsin k =log n
rounds is Q(kn'""*). As shown in [AAV86] this result is sharp for any fixed k. Note
also that as shown in [AA87], the worst-case number of comparisons for such an
algorithm is Q(n'"""*(log n)"/*), i.e., it is bigger for every fixed k. Thus we conclude
that the average behaviour is somewhat different from the worst-case one for parallel
comparison sorting algorithms. Qur main result (Theorem 1.1) shows that this difference
is, however, very small and shrinks to a constant factor if we fix the number of processors
and estimate the running time. It is more than a constant factor if we fix the time and
estimate the number of processors.

Our methods supply some results for randomized selection algorithms as well. In
particular, we can show that the average number of comparisons needed in any
randomized algorithm for finding the maximum of n elements in two rounds is ©(n*'?)
and for doing so in three rounds is @(n). We omit the details.

»

Appendix 1. We have to show that for 0<<f=y/4, o (2f)+ (y—2f,0)=
@x(y, f). That is,

((zf)l-t—lfk—-) ((y_zf)l+l/k- .)) (yn—uk L ‘)
k(’—‘—‘dcmm 2f) +k P G (y—2f)|zk ey Y
or

(2f)l+l/k yl+|,’k
(c/2)"* (c/4)V

Put a =2f/y and h(a)=(1—a)" " +a"""*/(c/2)""* —1/(c/4)"*. We have to show
that h(a) =0 for all 0 < @ = 3. This is done by checking that k is convex, A'(}) =0, and
h(3)=0. Hence for all 0< a =3 h'(a) =0 and therefore h{a) = h(3)=0.

(y__zf)l&-l;'k_“_

L0

i

1190 N. ALON AND Y. AZAR

h is convex, as it is a sum of convex functions. h'(}) = —(k+ 1)/k[(H)"" = (1/2)"*/
(¢/2)"*]1=0, as c=2.

Caloili SR
Gl S (E))=

Appendix 2. We have to show that

as c=32.

h=0 where
(2.5) .

h= [{1 T } .]

g (/2%] T ((c/2)an)"* (c/16)7F

subject to
{2.4) a, =1, pa,+ pa, =«
and
{2.6) a=1i

(Recall that p, p, a, a), 220, p+p=1, c=256e.) Consider h as a function of «,
where a, p, § are constants and a, = (a — pa,)/p. Since @, =1, @ =} we have 0= o, =
(a—p)p=1—(1—-a)/p. Clearly h(«a,) is a convex function of «,, i.e., h"(a,) =0 for
all admissible a,. Here we prove that h'(1—-(l—a)/p) =0 and hence, as h'(a,) is
nonincreasing, we have h(a,) = h(1 —(1—a)/p). Wenextshow that k(1 —(1—-a)/p) =0
and complete the proof. To check that h'(1 —(1—a)/p) =0, observe that

k+1 al*] . cf2(=p/p)

h'(a|)=P[—E{’—l(l—al)"*+

k (c/2)7%) “Pri(c/Dan) T
BT e s ;]
k[(k+1)(1—a,) +(k+”(c/Z)'”‘+2((c/2)a3)“”“ "

For a,=1-(1-a)/p we have a,=1; hence (since 0=p=1,a=1)

h’(l —1—;—0) =£[—(k+1)(1—;3)”k+(k+1)((1 "l_;g)m/(cmm) +(%)”"]
g%[-(m D1 -a) +(k+ l)a'“‘(‘i‘)w > (f)'k}
frnfr-are-en(d)")-(2)"]
=fleo(()"-6"0)-())

-2y o019

RANDOMIZED PARALLEL SORTING 1191

The last quantity is clearly negative for k = I {(as ¢ = 256¢). For k=2, (2/c)" " =(})"" =
1—-1/k, and hence we have

i(-52) () T (o-B)]2

as needed. It remains to check that &(1 —(1—-«)/p) =0. Indeed

l1-a 1—a\'""* (I—a)"”‘/ B H} p (16)""
h(l_ P)ip[(P) i o P e +(e/2>"" ¢ '

Since (I1-x)"Z1—yx for0=x=1, y=1 this implies

1A

0,

1 - (1—a)"™"* 1= ((1+1/k)1=a)/p) 1-p 16\ """
h(IA ﬂ’)z /k +p i/k WrpreT i e
p P (c/2) (c/2) é
M_(l—a);"’:k_{ul—(l+1/k)(l*a)‘(ié)"k
P]‘A (C/z)h‘f\ c .

As p=1 we conclude

l_—“C_Y < g 1/k E 1/k ik o i l i o

{15920 [6) amermar-(e)a-or-om]
2 1/ k C(l“"a’) ik 1 ol

=) oo (452) " - ()] +1-2}

Since a=} and c¢=256e implies [(c/2)(1—a)]"*=(c/4)"" =(64e)"* =64"*-
(1+1/k) we have

05920 BO ()
)

(
el k
(8 Towrer(s-8) o]
)" [o- |

This completes the proof of (2.5).

Appendix 3. Here we show a =3 Recall that a =a/B, where a=E(2g)=
E(2g'+g"), g is the number of comparisons inside B, and g” is the number of
comparisons between B, and Z,. Let F' be the set pf all comparisons (= edges) between
elements of Y and let F” be the set of all comparisons between Y and Z whose results
do not follow from the known information about the ranks. Put |F'|=¢, |F"|=¢ and
let f=e+32 be the "f-number” of Y. As the members of B, are 8 random elements

of ¥ we have
can-(3)/ (i<

1192 N. ALON AND Y. AZAR

Consider a fixed edge (=comparison) in F”. Such a comparison compares some
member m, € Y to some member m. € Z. The probability that the m, will be in] 5
is, clearly, 8t/ y. As the permutation m is chosen randomly, the probability that m € B,,
given that m. € Z, (and that m, e U[., B,}, is 1/t Therefore, the expected number of
edges from F' that join members of B, to members of Z, for some 1 =i=1is at most
[F[- Bt/y-1/t=[8&]y. By the symmetry of the sets B, this gives E(g") = Bé/yt. There-
fore, since Br=y,

3 5 I b
a=E(2g)= E(Zg'+g")‘é?.ﬁﬁe+&’§2ﬁ(e+~é) =2—{
i vt vt 2 vt

Recall that r = 4f/ v, ie., f=ty/4. This implies @ = a/B8 =2f/yt =, as needed.

REFERENCES

[AAB8] N. ALoN AND Y. AZAR, Sorting, approximate sorting, and searching in rounds, SIAM J. Disc.
Meth., 1 (1988), pp. 269-280.
[AAVEE] N. ALon, Y. Azar, aND U. VisHKIN, Tight complexity bounds for parallel comparison sorting,
in Proc. 27th Annual IEEE Symposium on Foundations of Computer Science, Toronto,
Ontario, Canada, 1986, pp. 502-510.
[AHU74] A. V. AHo, J. E. HoPCROFT. AnND J. D. ULLMAN, The Design and Analyvsis of Compurer
Algorithms, Addison-Wesley, London, 1974, pp. 92-93.
[Ak85] S. Ay, Parallel Sorting Algorithms, Academic Press, New York, 1985,
[AKS83a] M. AsTal, J. KoMmLOs, AND E. SZEMEREDI, An O(n log n) sorting nerwork, in Proc. 15th
Annual ACM Symposium on Theory of Computing, 1983, pp. 1-9.
[AKS83b] . Sorting in c log n parallel steps, Combinatorica, 3 (1983), pp. 1-19.
[AVE7] Y. Azar aND U. VisHRIN, Tight comparison bounds on the complexity of parallel sorting, SIAM
J. Comput., 3 {1987), pp. 458-464.
{BHe85] B. BoLLoBAs AND P. HELL, Sorting and graphs, in Graphs and Orders, I. Rival, ed., D. Reidel,
Boston, MA, 1985, pp. 169-184.
{Bo86} B. BoLLoBAS, Random Graphs, Academic Press, New York, 1986, Chap. 15.
[BHo85] A. BORODIN anD). E. HOPCROFT, Routing, merging and sorting on parallel models of computa-
rion, J. Comput. System Sci., 30 (1985), pp. 130-145.
[BT83] B. BoLLoBAS AND A. THOMASON, Parallel sorting, Discrete Applied Math., 6 (1983), pp. 1-11.
[GK87] M. GeEres-GRAuUs AND D. KRizANC, The complexity of paraflel comparison merging, in Proc.
28th Annual IEEE Symposium on Foundations of Computer Science, Los Angeles, CA,
1987, pp. 195-201.
[HHBO0] R. HAGGKVIST AND P. HELL, Graphs and parallel comparison algorithms, Congr. Numer., 29
(1980), pp. 497-509.
. Parallel sarting with constant time for comparisons, SIAM J. Comput., 10 (1981), pp.
465-472.
[HLP59] G. H. HARDY, J. E. LIiTTLEW0OD, AND G. POLYA, [nequalities, Cambridge University Press,
Cambridge, 1959.
[Kn73] D.E.KNUTH, The Art of Computer Programming, Yol. 3: Sorting and Searching, Addison-Wesley,
Reading, MA, 1973.
[P187) N. PipPENGER, Sorning and selecting in rounds, SIAM J. Comput., 16 (1987), pp. 1032-1038.
[Re81] R. REISCHUK, A fast probabilistic soriing algorithm, in Proc. 22nd Annual [EEE Symposium
on Foundations of Computer Science, Nashville, TN, 1981, pp. 212-219.
[Rer85] J. H. REIF, Anoptimal paratlel algorithm for integer sorting, in Proc. 26th Annual [EEE Symposium
on Foundations of Computer Science, Portland, OR, 1985, pp. 496-503.
(Th83] C. THOMmPSON, The VLSI complexity of sorting, LEEE Trans. Comput., 32 (1983), pp. 1171-1134,
(Va7$] L. G. VALIANT, Parallelism in comparison problems, SIAM J. Comput., 4 (1975), pp. 348-355.
[Ya77] A. C. C. Yao, Probabilistic computations: Towards a unified measure of complexily, in Proc. 18th

Annual IEEE Symposium on Foundations of Computer Science, Providence, RI, 1977, pp.
222-227.

[HHS81]

